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Using the model of  turbulent transfer in the field of mass forces, the problem of  development o f  a 
plasma jet  in the near-axis zone of  a vortex chamber is solved. The ratio of  the maximal tangential 
velocity to the longitudinal velocity in the je t  is shown to have a major influence on gasdynamic plasma 
confinement. The effects of  nonisothermicity and heterogeneity of  the f low are much smaller. The 
available experimental data verify the results obtained. 

It is well known [1-3] that flow rotation is an effective means of stabilizing plasma jets and flames. It is widely 
used in designing plasma generators and vortex-type furnaces. Experiments demonstrate that, with vortex stabilization, the 
gasdynamic structure of the flow has a major influence on the spatial stability of an arc colunm and on its characteristics. 

Recently, ever closer attention has been given to the problem of gas-vortex stabilization of strongly heated flows 
[4-9]. These investigations outlined the conditions under which stable confinement of a plasma jet is observed in the 
vicinity of the axis. The basic characteristic geometric and flow rate parameters, governing the stabilization of a jet when 
its mixing with a peripheral rotating flow is minimal, are found. 

Such a process of jet localization in the near-axis region may be elucidated on the basis of considering a stability 
mechanism in rotating flows. One of the examples of instability development is the formation of Taylor-  Goertler vortexes 
between rotating coaxial cylinders. Another example of stabilization, observed experimentally, is the propagation of a 

heated near-axis jet in a vortex gas flow [4-7]. Available experimental data on the turbulence structure in rotating flows [2, 
10, 11] established a marked decrease in velocity fluctuations in the regions where turbulent exchange is suppressed. 
Therefore, jet localization in the near-axis region will be affected by flow laminarization in the mixing layer under the 
action of the field of mass forces. 

The conditions of formation of such regions in twisted flows are known by now [2, 12, 13]. They ensue from the 
principle of flow stability in the field of mass forces formulated by Rayleigh. In conformity with the above principle, 
turbulence is suppressed under the condition where 0F/0r > 0 and Op/Or > 0. If the circulation and density derivatives 

reverse their sign along the radius, the turbulent transfer in such zones will be enhanced. 
Thus, the mechanism of plasma confinement on the axis of the vortex reactor is affected by two principal factors, 

viz., by suppression of turbulent exchange due to centripetal forces and due to a density gradient across the radius. Study 
[7] has determined experimentally the contribution of each of the above factors during stabilization of various-density jets 

in the vortex chamber. 
However, devising reliable methods of calculating the development of jets with gas-vortex stabilization faces a 

number of fundamental difficulties. First of all, a sufficiently rigorous theory, describing the effect of mass forces on 
turbulence, is up till now lacking. The available empirical relationships require experimental substantiation for specific 
conditions. Besides, the process on the whole is affected strongly by flow limitation, characteristic of flow interaction in a 
vortex chamber. The problem becomes especially complicated when consideration is given to strongly nonisothermal 

rotating jets, with which the current study deals. 
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Fig. 1, Development of plasma jet in a vor tex reactor (a) and the f low 
diagram in a plasma reactor (b). 

In theoretically describing such complex phenomena, and especially in setting up engineering methods of calcula- 
tion, it is justifiable to employ the simplest models of turbulent transfer that would account for the principal factors and at 
the same time give good agreement with experiment. A similar transfer model, worked out earlier, made it possible to 
describe friction and heat transfer for a wide class of twisted flows, namely, for those in curvilinear channels [14], for 

swirled tube flows [15], and for vortex semiinfinite jets [16]. The present study has extended this model to jet development 
with vortex stabilization in nonisothermal conditions. The study aims at establishing quantitative relations between the 
aerodynamics of a vortex gas flow and the stabilization mode of a heated gas jet. 

1. Law of Near-Axis Jet Expansion in the Field of Mass Forces. The flow pattern of a plasma jet with vortex 
stabilization is fairly intricate. Two characteristic regions are seen on the photograph of a plasma cord (Fig. la). Immedi- 
ately behind the spot of injection of the plasma jet into the vortex chamber, the plasma jet expands intensely, and a 
peculiar "barrel" forms. Thereafter, the jet diameter decreases due to gasdynamic compression, and further on it does not 
change along the height of the vortex chamber. 

Figure lb shows a diagram of the flow considered. A gas jet with mass flow rate Go, temperature To, and density 
P0 is injected axially into a vortex chamber of radius Rch and height Lch. The initial radius of the injected jet r 0 is taken 
equal to the size of the diaphragm on the opposite end face. The jet is stabilized by supplying to the periphery a swirled 

gas flow Gch with temperature Tch and density Pch" The circumferential velocity on the periphery V~c h and, corresponding- 

ly, the circulation I'ch = V~chRch are assumed specified, and the tangential Reynolds number is obtained as Re~c h = 

Pchrch//Zch. 
Let us adopt the following assumptions. The tangential velocity in the near-axis jet varies linearly over the radius, 

from zero on the axis to a maximal value on the boundary of its mixing with the peripheral flow (V J r  = const). Circula- 
tion from the mixing boundary to the side wall of the chamber is unchanged. The axial velocity of individual gas moles in 

turbulent motion is governed by the mean flow rate velocity at the entry of the near-axis jet to the vortex chamber and 
remains unvarying along the chamber axis. 

We should point out that the adopted assumptions are confirmed by the results of measuring the aerodynamics of 
vortex chambers with axial injection [2, 5-7, 10]. Besides, we will consider the flow as unaffected by the boundary layers 

forming on the end surfaces. Such an approximation is rather crude, since the effect of the boundary layers on flow 
formation in the chamber may in some cases be determining [2]. However, calculations with allowance for end face flows 
should subsequently present no difficulties. 

The gas is assumed ideal, and compressibility effects are disregarded. For simplicity, we take the temperature or 
concentration profile in the mixing layer to vary by a linear law, and the gas temperature beyond the jet to be constant and 
equal to the temperature of the peripheral flow Tch at the chamber entrance. 

In the analysis we resort to a physical mode of transfer in the field of mass forces worked out for curvilinear and 
twisted flows [14-16]. Let a turbulent formation (a turbulent mole) be ejected from the boundary of the plasma jet into the 
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external cold flow with a certain initial velocity equal to the root-mean-square value of the radial component of the 
fluctuating velocity of the turbulent flow u'r = (U'Zr) I/2. Of the forces acting on the turbulent mole, we take into account 
only mass and pressure forces and neglect the effects of viscous friction of the mole on the surrounding gas. Under such 
conditions, the equation of gas mole motion in the radial direction is written as 

ctu'~ dp 
Po ~ = L~' dr ' (1) 

where fm = 00" V2~,o/r - f0 is the mass forces composed of the centrifugal component and the force fo that gives rise to the 
fluctuating velocity in the absence of mass forces; and dp/dr = oWffr is the radial pressure gradient. 

On substitution and rearrangement with a view to the condition of conservation of the mole circulation in its 

oscillatory motion, Eq. (1) may be written in the form [14] 

�9 Our 
ur Oy leg + :plOd, (2) 

where 

k = 2  v~ o(v:)  + 1 oo v?~ (3) 
r 2 Or O Or r 

Integrating Eq. (2) at k = const yields 

u; 2 --  u;~ = --  ky 2, (4) 

where U'r0 is the radial fluctuation of the velocity in the absence of mass forces. For a spatial boundary layer, it may be 

represented using the theory of mixing length as 

. ; o = t O [ ( ~  2 1 or 

On substituting Eq. (5) into Eq. (4) we obtain an expression for velocity fluctuation with the mass forces 

where 

Ri=  

k 2 V~ or' 1 Op V~ 
: Or + p Or r (7) 

(c?Wx/Or) z + ( l / r . S r  /Or) z (OWx/Or) ~ + (1/r. OF~Or) ~ 

is the Richardson number. 
The solution of relation (6) simultaneously with Eq. (7) makes it possible to find the dependence of the fluctuating 

velocity on the level of centrifugal and buoyant forces in the propagation of a jet with vortex stabilization and to complete- 

ly calculate the jet development in the vortex chamber. 
We first find the maximal diameter of the plasma "barrel" being formed. Evidently, the maximal expansion of the 

jet will be attained when the radial fluctuation goes to zero, that is, u' r = 0. Then relation (6) gives 

lo~ (8) 

As in the theory of free turbulence, the mixing length may be assumed to be proportional to the longitudinal 

coordinate, i.e., lo = Cox. Then its value for the section x = Xm {s defined as 

lo,~ = Cox,~, (9) 
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Fig. 2. Ef fec t  o f  the  n o n i s o t h e r m i c i t y  fac to r  on the in tegra l  va lue  of  the  
R ichardson  n u m b e r  (a) and the  expans ion  l a w  of  va r i ab le -dens i t y  je ts  in 
the  f ie ld o f  mass  fo rces  (b), Do, = 0.1 m,  r o = 0 . 0 2  m; G o = i dem = 
10 -3 kg /sec :  1) W = 1; 2) ~u = 10;  3) qJ = 0 .1 ,  W• = i d e m ; 4 )  Go = 
10 -4 kg /sec ,  qJ = 10;  5) G o = 10 -2 kg /sec ,  qJ = 0 .1 .  

where C O is the turbulence constant, and the coordinate x is reckoned from the chamber entrance. 

The maximal expansion of the jet in the radial direction may be presented in the form 

Cox., 
g~ 1 / ~  , (10) 

whereas the largest diameter of the plasma "barrel" is predicted as 

d,~ = 2 (ro + gin), 

Let us derive the expansion law for the injected jet on the initial section of its development, where the entrance 

"barrel" forms. To this end, we represent Eq. (1) as 

W~o 02g ~- k g =  fo/Po, (11) 
Ox z 

where Wx0 is the axial velocity of the fluctuating mole, equal to the mean flow rate velocity of the jet at the chamber 
entrance. 

The solution of Eq. (11) has the form 

_ W~. (~'VF G ] .  
(12) 

Equation (12) with the boundary conditions x = 0, y = 0, x = x~, y = Ym, and dy/dx = 0 is written as 

g = g,.sin { -]/~" x'~ nW,,. sin'( -I/'k x'~. (13) 

The coordinate Xm, at which the maximal expansion of the jet is attained, can be found from the following relationship: 

. g  
Xra = Wx. 

2 "l/k- " (14) 
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Thus, obtained relations (13) and (14) allow a complete computation of the boundary of the gas or plasma jet with 
vortex stabilization. It follows from the equations that the jet boundary changes by a sinusoidal law, and the expansion 
process is determined by the Richardson number and the complex k, which is an Ri number component. 

Let us derive the expression for the Richardson number with a quasisolid law of rotation in the near-axis region. 
The temperature profile in this zone is also assumed linear 

T - -  Tch 
- - - -  1 - - ~ ,  

To - -  T ch 

where ( = r/r m and r m = r o + y is the radius of the mixing boundary of the jet. At small expansions of the jet, y < ro, 
the relative coordinate may be written as ( = r/ro. The quantities To and Tch are the temperatures on the jet axis and in the 
chamber. 

The density distribution across the mixing layer thickness is written as follows: 

P/Po.- To/T = , ( 1 5 )  ~0- -~ ( r  1) 

where r = To/T~ is the temperature factor. 

Then, given that 3Wx/Or < < 1/r �9 P/0r, we have the expression for the Richardson number in the near-axis zone 

l ( ,  - -  l )  
R i =  1+---~- , - - ~ ( ~ : - - 1 )  (16) 

The Ri number varies along the jet radius. Obviously, the jet expansion is influenced by a certain mean value of 
this parameter 

1 

( R i )  = f R i d ~ = l + l ( * - . - - - - - ~ - - - l n ~ - - l l . -  - (17) 
8 4 ~ - - I  \ J 

For isothermal flow (r = 1), (Ri) = 1 in the zone of quasisolid rotation, which lies within the values Ri = 1/24-2 [13, 
17-19], at which disturbances in the field of mass forces are suppressed. 

As follows from Eq. (17), the mean Richardson number {Ri) is a function of the nonisothermicity factor 
stipulated by buoyancy effects in the flow with density stratification in a radial direction. Figure 2a shows the results of 

calculating the Richardson number from Eq. (17) as a function of the temperature factor r Evidently, with rising jet 

temperature the value of (Ri) increases, so that a positive density gradient along the radius must lead to an additional 

turbulence suppression. A change in the sign of the density gradient (r < 1) weakens the stabilization processes. It also 
follows from Fig. 2a that a quite weak influence of the buoyancy forces on the integral value of the Richardson number is 

predicted. Thus, heating of the near-axis jet up to To = 3000 K (at Tc~ = 300 and r = 10) causes an increase in {Ri) by 
40%. A still lesser influence is expected for the injection of heavy gases along the axis (at r = 0.1, (Ri) decreases by 

about 20%). From simultaneously solving Eqs. (13), (14), and (17), we obtain: 

the maximal expansion of the jet 

Ym C~ 1 + 1 ~P In ~ - -  1 ; (18) 
ro 4 ~ ~ - -  1 Ve,~ 

the longitudinal coordinate of this maximum 

= - [  l - -  -'j2 x,~ z~ i + 1 ~ In ~lJ - -  (19) 
r, 4 4 , ~ -  I , j V,~,,. 

and the trajectory of the outer boundary of the jet 

- =  t (;  /) -' t v  < ' i  * Y C~ 1 x_ I ~ l n ~ - - I  X sin 2 1 + - -  ~ l n ~ - - I  . 
ro ~ ' T - - 1  , 4 t~- -  1 , W~oro (20) 
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Fig. 3. Expansion law for a near-axis jet: a) isothermal conditions qJ = 1, dots denote 
experiment [5], curve denotes calculation from Eq. (18); b) injection of a plasma jet, 
T o = 5500 K, dots denote experiments [7], curve denotes calculations from Eq. (18). 

It follows from relations (18)-(20) that the expansion law for the jet with vortex stabilization is specified by two 
parameters, viz., by the ratio of the longitudinal velocity in the jet to the maximal circumferential velocity Wxo/V~m and by 
the nonisothermicity factor ~b. These equations permit us to completely calculate the jet expansion and analyze the centrifu- 
gal and density stratification effects on dynamic and thermal characteristics of jets with vortex stabilization. 

2. Discussion of Results. Comparison to Experimental Data. We will write expression (18) for Ym as a function 

of the tangential peripheral Reynolds number Re~h = 0chV~h" P~h/#~h and of the mass flow rate of the jet Go = ~rpoWxor2o, 
which are used most frequently in the processing of experimental data: 

y,, Co ~p Go 

1 ( ~  l n ~ - -  1! Rcht% Rch 4 1+ ! R%ch (21) 

The calculated results for expansion of various-density jets are shown in Fig. 2b. Lines 1-3 are obtained for a flow 

rate of the near-axis jet of Go = 10 -3 kg/sec;  here line 1 corresponds to isothermal conditions (r = 1), line 2 to injection 
of a hot jet (r = 10), and line 3 to injection of a cold jet or of a jet of greater molecular mass into a light peripheral flow 
(ff = 0.1). Clearly, with an increase in the tangential Reynolds number, i.e., with a rise in the rotation rate of the 
stabilizing flow, the maximal transverse dimension of the "barrel" Ym/Rch reduces appreciably. Stabilization of a light gas 
jet (curve 2) is achieved at Reynolds numbers considerably larger than in an isothermal jet and, conversely, a heavy gas jet 
(curve 3) begins to be confined at relatively low rates of rotation. At first glance, this contradicts the mechanism of density 
stratification of the flow where a positive density gradient leads to flow stabilization, and a negative density gradient to 
flow destabilization. However, of primary importance in this case is an increase in the longitudinal velocity in the light gas 

jet, as compared to the isothermal flow, due to its density reduction, provided the flow rates of the jets are identical. 

Accordingly, when the heavy gas is injected, its longitudinal velocity will decrease by 1/r times. 
If we carry out similar calculations at the same jet velocities Wxo, having correspondingly changed the jet flow 

rates, then, as we might expect, the jet of the light gas (curve 4, ff = 10) is stabilized faster than that of the heavy gas 

(curve 5). We note that the specific features indicated in Fig. 2b are verified qualitatively by experimental data [5, 7]. 
Relations (18)-(21) derived above contain one empirical quantity Co, which is the turbulence constant. Its value for 

free mixing layers [20] and for near-wall rotating jets [16] lies within the range Co = 0.09-0.14. In our case, for jets 
developing in vortex chambers, this value turned out to be C o = 2.2. Such a marked variation may have different causes, 
the main of them being, to our mind, the effect of end face flows, the use, for a linear scale, of the initial jet radius r0 
rather than of the mixing layer width, neglect of the longitudinal velocity shear in the jet, etc. 

Figure 3a compares the experimental and calculated data on the maximal jet expansion in quasi-isothermal condi- 
tions. In the experimental data, Ym corresponds to the thermal diameter of the jet of a weakly heated gas (To = 40-60~ 
at various initial diameters of the jet over a wide range of its flow rates. Clearly, the experimental data plotted as func- 
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Fig. 4. Trajectory of a plasma jet with vortex stabilization; experiments 
[7]: 1) Reeo. = 7.2" 104; 2) 8.7.  104; 3) 1.1 �9 105; 4) 1.4" 105; the curve 
denotes the calculation by Eq. (20). 

tions of the ratio of the maximal rotational velocity to the longitudinal velocity are correlated and well consistent with the 
calculational relation. It is significant that, when V~/Wx0 > 5, the expansion of the jet is practically unnoticeable and 
steady stabilization is attained in its near-axis region. 

Figure 3b gives a comparison of the calculated and experimental data [7] on the maximal expansion of a jet of low- 

temperature plasma. The diameter of the plasma reactor is D~a = 85 mm, its length Lk = 300 ram, r0 = 4 ram, and the 
diameter of the inlet opening is dl = 20 mm. The bulk temperature of the air plasma at the inlet is To = 5500 K, and the 
temperature factor is r = 20. The thermal diameter of the jet was determined by microphotometry of plasma column 

photographs. 
As is evident, the model proposed gives results fairly close to the experimental data, the plasma jet stabilization 

being attained at velocity ratios V~/Wx0 smaller than in quasi-isothermal conditions. This is due to the influence of such a 
significant temperature factor on the process of plasma confinement. 

Figure 4 gives in relative form the trajectories of plasma jets on the initial section for various tangential Reynolds 

numbers. The maximal expansion of the "barrel" Ym and the longitudinal coordinate of this maximum Xr, are taken as linear 
scales. The curve in this figure marks the calculation by Eq. (20). The trajectory of the jet during its formation in the field 

of mass forces obeys a sinusoidal law, which the model exactly predicts. The experimental data have an appreciable spread 
and deviate from the calculations in the region of "barrel" compression, where the diameter of the stabilized jet assumes a 

minimal value, virtually unchanged over the vortex chamber height. 

CONCLUSIONS 

1. We have performed an analysis of the development of a jet injected into the near-axis zone of a vortex chamber. 
We have analyzed the mechanism of gasdynamic stabilization of the jet in the field of mass and buoyant forces. A model 

of the jet expansion in the vortex chamber has been proposed. 
2. The main influence on the expansion of the near-axis jet is exerted by the ratio of the maximal circumferential 

velocity to the mean flow rate value of the axial velocity in the jet. The nonisothermicity factor is of secondary impor- 

tance. 
3. The obtained analytical relations qualitatively adequately describe the experiment. From a comparison with 

experimental data, we found turbulence constants for a jet with vortex stabilization on the initial flow section. 
4. The suggested transfer model disregards the effects of a great number of factors, for example, of end face 

flows, of radial mixing of the gas in the jet along the chamber height, of viscosity, etc. The task of further investigations 
is to develop and improve the model with regard to the noted specific features of the complex flow considered. 

NOTATION 

Lch, Rch, height and radius of the vortex chamber; r0, radius of its outlet opening; x, y, r, longitudinal and trans- 

verse coordinates and running value of the radius; ( = r/r~, relative coordinate; r~ = r0 + y, radius of the mixing layer of 
the jet; V,r, running values of tangential and axial velocities and of circulation; V~ch, V,m, tangential velocity on the 

peripheral wall of the chamber and its maximal value; Wx0, mean flow rate velocity of the near-wall axis; P0, To, density 
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and temperature of the wall; och, Tch, density and temperature of the peripheral stabilizing jets; Gore, Gch , maximal flow 
rates of the jet and of the peripheral flow; ~b = T0/Tch, nonisothermicity factor; Ym, rm = ro + Ym, Xm, maximal transverse 
expansion of the jet, its maximal radius, and longitudinal coordinate of the maximum; fir, pulsatory radial velocity; fo, fro, 
mass forces; k, parameter defined by relation (3); Ri, Richardson number, defined by Eq. (7); (Ri>, mean Richardson 
number, defined by Eq. (17); Jo, Co, mixing length and turbulence constant; R%c h = 0chV~hR~h//~ch, peripheral tangential 
Reynolds number. Indexes: 0, jet parameters and conditions with no rotation; ch, chamber periphery; m, maximal value. 
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